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Summary

From November 1991 to January 1992 the focus of the work was the
development of IFS algorithms and computer code for image compression,
the refinement of algorithms and computer code for compressing color
images and the development of wavelet methods for image compression.

Our improvements in compression algorithm have shortened image
compression times significantly. During this time period two papers were
submitted for publication.

During February and March we held discussions with Larry Domash, who
heads a group at Foster-Miller. Dr. Domash is the PI of a Phase II SBIR on
optical computing methods funded at Foster-Miller by SDIO and managed
by ONR (Wm. Michelli). One subject of the Foster-Miller program is the
development of optical processing methods for IFS encoding. Because the
subjects of our two ONR SBIR programs are related, Dr. Domash discussed
the availability of a possible collaboration with Mr. Michelli and
subsequently approached Netrologic. The objective of the subsequent
discussions has been to determine whether optical methods, particularly
those associated with four-wave mixing, could be used to shorten image
compressio, times.

Image Decompression

Rapid image decompression is crucial for many potential Navy and
commercial users of the fractal image compression scheme. During the
previous report period we developed a completely new algorithm for ...
decoding images.

When decoding during the iterative method, an initial image flo) in L on L]

[0,1] x [0,1] is used to compute the iterates fin= W (fin-I 1), where
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WW (1)

This can also be written as

f1n1(xy) = a f +n-)0 (2)

where the ith term of the summation is defined on the region R i, V i is an
affine transformation on the region R i, and a i and o i are contrast and

intensity adjustments respectively.

Suppose -e are decompressing an image of M x M pixels. We can write the
image as column vector, and then the above equation can be written

f =n S f n-11 +0 (3)

2 2
where S is an M x M matrix with entries s , which encode the contrastiJ
adjustments a i and spatial affine transformations V i and 0 is a column
vector encoding the intensity adjustments. Then

n-1

fni= S n f + 0S i . (4)
101

If each s is less than 1 then the first term is 0 in the limit. This
condition can be relaxed if W is eventually contractive. When I - S is
invertible
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S =0( 1  (5)

i

If each pixel value of fnJ depends upon only one (or even a few) pixel
values of f {n-1 then I - S is very sparse and is inverted readily by
sparse matrix methods. We have implemented this algorithm and it shows
promising results. It runs considerably faster than the previous version of
the iteration algorithm.

The new decoding triangularizes the S matrix by pivoting. We have
observed that different pivoting schemes lead to different decoding times
since each pivot operation eliminates an entry in one place in the matrix
and creates another somewhere else. If the new entry is located above the
diagonal, no further pivot is required, but if it is located below, another
pivot will be required. We are studying dereferencing schemes which
allow several simultaneous pivot operations in the case where one pivot
requires another.

In a separate effort, we are also implementing integer versions of the
iteration scheme with a variant on the storage of the transforms. In the
iterative scheme, each pixel depends upon another (with a brightness and
a contrast adjustment). Rather than computing this dependency from the
transformations at each iteration step, we compute it initially. This also
appears to lead to considerable improvement and to times which rival the
matrix inversion method. Current times are 8 or less on 486 machines
about 20 seconds on 286 machines without a co-processor.

Encoding Optimization

The encoding algorithm consists of searching through a large number of
sub-images, in order to find one which has a low RMS error when
correlated with a piece of a quadtree partition of the image. In order to
reduce this search time, we classify the collections of sub-images. The
search is limited to elements of the same class, leading to a reduced search
time.
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Our classification is as follows:

Each sub-image is first partitioned into 4 equal quadrants, which are
ordered by brightness. This ordering leads to 3 classes, once a
rotation and a flip operation are used to bring the brightest quadrant
into the upper left position. This gives three classes and also
determines a rotation and a flip operation (reducing the search class
by a factor of 8, the number of symmetry operations on the square).
These three classes are further split into 24 by ordering the contrast
levels of the sub-quadrants of each quadrant. This gives a total of 72
classes.

We are evaluating this improvement. Initial results show a 50-fold

increase in encoding speeds.

Color Image Encoding

We have investigated alternative methods of color encoding. Typically,
color images are stored as indices to a color look-up table. This means that
an 8 bit per pixel image can contain 256 colors from a palette which
contains (typically) 224 colors. Encoding such images is done usually by
expanding the data to a red-green-blue (RGB) representation, converting
this representation to a YIQ representation (also used in color television
transmission) and encoding the three signals separately. The advantage of
this scheme is that the I and Q signals can be stored very compactly with
very little perceptual degradation. The disadvantage is that three images
must be encoded.

This algorithm has been implemented. The implementation involves some
tricky color look-up table manipulation because screen displays have a
palette of 256 colors, while the YIQ signals typically yield a much larger
number of colors. To circumvent this problem, we store the color map of
the original image along with the compressed image. The display process
finds the color from the table that is closest to the YIQ color from the
decompression.
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We also have investigated an alternative scheme which depends on the
internal ordering of the color look-up table. The color entries are ordered
first by hue and within each hue class by the Y value. The difficulty is
finding the hue classes. The Y-ordering within each hue class means that
the color image represented by the color lookup table entries will share
some geometric features with the Y channel only. Difficulties arise at hue
class boundaries, as well as in defining the hue classes. Although initial
experiments appear very promising, the artifacts arising from boundary
cross-over have been difficult to eliminate. Even when the hue class index
is stored with the image, so that the hue class of each piyel is known, the
difficulty in automatically segregating the colors results in poor image
quality.

We are continuing to investigate this method. While difficult and
complicated, the potential utility of such an algorithm is wide and is not
restricted to fractal methods. In particular because only one channel is
encoded (vs three) there is a very large time and space savings.

Optical methods

Optical four wave mixing can be used to construct the convolution

correlation of four images. This operation may be represented by

I r 1 1(I 2*1 3), (6)

where I r1 1, 2, and I 3 denote the output and the three input images
respectively, while e represents the correlation operation and * represents
the convolution operation.

The major bottleneck in computing an IFS code for an image is checking
the large set of possible linear transforms and windows. In particular, it is
necessary to compute
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I w = T(W.I)oI, (7)

for a large number of linear transforms, T, and windows, W. In this
formula, - represents multiplication while ° represents correlation In
particular W.I is the windowed image corresponding to a tile R i in some
partition as described above.

In order to put this into the form of a three wave product we use the
convolution theorem:

-1
W.I =F (FW*FI1), (8)

where F and F -1 correspond to the Fourier transform and inverse Fourier
transform respectively. Applying Formula (8) to Formula (7) we obtain

I w= TF -I (FW*FI).I. (9)

The composition of operators TF can also be written F T F, where
T F is the linear transform induced by T in the spatial frequency domain.

We are currently discussing the implementation of the operation described
by Equation (9) by means of optical techniques with Larry Domash of
Foster Miller.
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